
How Task Analysis Can Be Used to Derive and Organize the Knowledge
For the Control of Autonomous Vehicles

Anthony Barbera, James Albus, Elena Messina, Craig Schlenoff, John Horst
National Institute of Standards and Technology

Gaithersburg, MD 20899

Abstract
The Real-time Control System (RCS) Methodology has
evolved over a number of years as a technique to capture
task knowledge and organize it in a framework conducive
to implementation in computer control systems. The
fundamental premise of this methodology is that the present
state of the task activities sets the context that identifies the
requirements for all of the support processing. In
particular, the task context at any time determines what is to
be sensed in the world, what world model states are to be
evaluated, which situations are to be analyzed, what plans
should be invoked, and which behavior generation
knowledge is to be accessed.

This results in a methodology that concentrates first and
foremost on the task definition. It starts with the definition
of the task knowledge in the form of a decision tree that
clearly represents the branching of tasks into layers of
simpler and simpler subtask sequences. This task
decomposition framework is then used to guide the search
for and to emplace all of the additional knowledge.

This paper explores this process in some detail, showing
how this knowledge is represented in a task context-
sensitive relationship that supports the very complex real-
time processing the computer control systems will have to
do.

Background

An RCS system models complex real-time control as three
major processing components (figure1):

1) sensory processing to measure, recognize, and
classify entities and events of task interest in the
environment;

2) internal world model processing that represents
and derives world states, situations, and
evaluations in a task context manner; and

3) behavior generation processing that reasons from
this world model, selects plans, and makes value
judgments to decide on the next appropriate
output action to accomplish the goal tasks.

These three components work together, receiving a goal
task, breaking it down into simpler subtasks, determining
what has to be known in the internal world model to
decide on the next course of action, and alerting the
sensory processing as to what internal world objects have
to have their states updated by new sensory readings. All
together, this produces task-directed, sensory-interactive,

adaptive, stable, real-time accomplishment of the input
goal.

A large number of complex real-time control systems have
been built at the National Institute of Standards and
Technology (NIST) and other research organizations using
the NIST defined Real-time Control System (RCS, now
referred to as 4D/RCS) design methodology and reference
architecture (Albus and Meystel 2001). These systems have
as their backbone a hierarchical organization of agent control
modules, each of which does a partial task decomposition of
its input goal task, and outputs simpler subtask goals to the
next lower subordinate agent control module. Each of these
agent control modules is made up of the three major
processing components of sensory processing, world
modeling, and behavior generation. Each agent control
module is concerned with just its own level of responsibility
in the decomposition of the task.

This RCS methodology has been applied over the past
decade to the autonomous intelligent control of unmanned
ground vehicles (Albus et al. 2002). This paper will describe
the RCS methodology in its application to the task of
autonomous on-road driving to illustrate its approach to
“mining” and representing task knowledge for control system
implementation.

RCS Methodology Summary

The RCS methodology concentrates on the task
decomposition as the primary means of understanding the
knowledge required for intelligent control. This approach
begins with the knowledge “mining” activities to retrieve
knowledge from subject matter experts (SMEs). The
gathering and formatting of this knowledge can be
summarized in six steps (figure 2), each of which follows
from the knowledge uncovered by the previous steps:

1) The first step involves an intensive analysis of
domain knowledge from manuals and SMEs,
especially using scenarios of particular subtask
operations. The output of the effort is a structuring
of this knowledge into a task decision tree form of
simpler and simpler commands (actions/verbs) at
simpler and simpler levels of task description.

drussell
Proceedings of the AAAI Sprint Symposium Series on Knowledge Representation and Ontology for Autonomous Systems, Palo Alto, CA, March 22-24, 2004.

SENSORY

PROCESSING
WORLD MODELING
VALUE JUDGMENT

KNOWLEDGE

Images

Maps Entities

Sensors Actuators World

Classification
Estimation
Computation
Grouping
Windowing

Mission (Goal)

internal
external

Events
Planners
Executors

Task
Knowledge

BEHAVIOR
GENERATION

Figure 1. The basic internal structure of a 4D/RCS control loop. Sensory processing performs the functions of windowing,
grouping, computation, estimation, and classification on input from sensors. World modeling maintains knowledge in the
form of images, maps, entities, and events with states, attributes, and values. Value judgment provides criteria for decision
making. Behavior generation is responsible for planning and execution of behaviors.

DOT Driving Manuals
State Driving Codes

Traffic Control Devices

TASK
ANALYSIS

+

Domain Experts

GotoDestination...

GoOn…Rd TurnRightOnto...RdTurnLeftOnto...Rd

FollowLane

DoTrajSeg

DriveOnTwoLaneRd PassVehInFront NegotiateLaneConstriction

ChangeToRightLaneChangeToLeftLane

GoOn…Rd GoOn…Rd

FollowLane FollowLane

DoTrajSegDoTrajSegDoTrajSeg

Turn AccelerateForward SlowDown

GotoDestination...

GoOn…Rd

PassVehInFront

FollowLane

DoTrajSeg

Vehicle
Trajectory

Destination
Manager

Driving
Behaviors

Route Segment
Manager

Elemental
Maneuvers

Turn

Steering
Control

AccelerateForward

Speed
Control

P
N
D
2
1

MAP to AGENT
ARCHITECTURE

MAP TASK DECISIONS
to STATE-TABLES

Task Decision Tree
(On-road Driving Example)

Hierarchical Organization of
Agent Control Modules

SENSORY
PROCESSING

KNOWLEDGE
DATABASE

BEHAVIOR
GENERATION

WORLD
MODEL

VALUE
JUDGMENT

(Executing)

(FollowLane)(Executing)

SENSORY
INPUT

(Driving Behaviors Agent
Control Module)

Select “PassVehInFront”
Plan State-Table

(PassVehInFront)

DriveOnTwoLaneRd

PassVehInFront

PassVehInFront

DriveOnTwoLaneRd

NegotiateLaneConstrict

.
PassVehInFront .

BEHAVIOR
GENERATION

COMMANDED
TASK (GOAL)

STATUS

STATUS

NEXT
SUBGOAL

(PassVehInFront)

(FollowLane)

STATE-TABLES
PLAN

LegalToPass

EnvironmentSafeToPass

SituationInFrontOKtoPass

SituationInBackOKtoPass

OnComingTrafficOKtoPass

NoTransitOrSchoolBusStopping

NoBridgeInPassZone

NoRailroadXInPassZone

NoIntersectionsInPassZone

LaneMarkingsAllowPass

“NoPassZone” -

NoTollBothInPassZone

NoTunnelInPassZone

NoConstructionInPassZone

NoTransitOrSchoolBusStopping

NoBridgeInPassZone

NoIntersectionsInPassZone

LaneMarkingsAllowPass

NotInEffect

NoTollBothInPassZone

NoTunnelInPassZone

NoConstructionInPassZone

Lanes(pos, dir, width,
curvature)

MapOfPassZone (speeds,
veh-positions, accel)

WeatherNotObscuring

WindsNotSignificant

OwnVehicleCapable
RoadSurfaceSuitable
RoadNotTooSlippery

RoadSplashNotSignifcant

 S1 ConditionsGoodToPass

PLAN STATE TABLE

PassVehInFront

 S2 ChangeToLeftLane

S2 InPassingLane S3 FollowLane

S4 ReturnedToLane S0 FollowLane
 Done

NewPlan S1 FollowLane

 S3 ClearOfPassedVehicle S4 ChangeToRightLane

ConditionsGoodToPass

NoVehicleEnteringRoad
VehInFrontNotBlockingSight

NoCurveBockingSight
NoHillBlockingSight

NoVehicleTurningLeft

NoPedestrianOnRoadSide

NoBicyclist

VehiclesDrivingNormally

NoVehiclePassing

SufficientReturnSpace

NoVehicleEnteringLane

NoPostalVehicleStopping

NoActiveEmergencyVehicles

NoDeliveryVehicleStopping

VehicleNotAttemptingToPass
VehicleNotTailgating

VehicleNotClosingRapidly
NoActiveEmergencyVehicles

DistToOnComingVehicleOK
OncomingVehiclesNormal

BEHAVIOR
GENERATION

WORLD MODEL
KNOWLEDGE

World StatesObjects, Features

Measurement
Resolutions

Input State/Situation Output Action

CrossBuck(pos)

0.11 degrees @ 600 ft

15 ft

9 in

54 in

SENSORY
PROCESSING

STEP 1 STEP 2

STEP 3

STEP 4STEP 5

STEP 6

Lights (pos, size, state)
Crossing Gate (pos,

Signs (pos, facing-dir, loc,
text and graphics)

Tracks (pos, size, dir)

Train (pos, dir, state)

CrossBuck(length,
width, orient, pos)

length, height, state)

ColorCameras LADAR
Radar Stereo FLIR Nav

Segmented Groupings

Features and Attributes

Objects and Maps

Object Groupings and
Classifications

Figure 2. The six steps of the RCS methodology approach to knowledge acquisition and representation.

2) This step defines the hierarchical organization of
agent control modules that will execute these layers
of commands in such a manner as to reasonably
accomplish the tasks. This is the same as coming up
with a business or military organizational structure
of agent control modules (people, soldiers) to
accomplish the desired tasks. This step forces a
more formal structuring of all of the subtask
activities as well as defining the execution structure.

3) This step clarifies the processing of each agent’s
input command through the use of rules to identify
all of the task branching conditions with their
corresponding output commands. Each of these
command decompositions at each agent control
module will be represented in the form of a state-
table of ordered production rules (which is an
implementation of an extended finite state machine
(FSM)). The sequence of simpler output commands
required to accomplish the input command and the
named situations (branching conditions) that
transition the state-table to the next output command
are the primary knowledge represented in this step.

4) In this step, the above named situations that are the
task branching conditions are defined in great detail
in terms of their dependencies on world and task
states. This step attempts to define the detailed
precursor states of the world that cause a particular
situation to be true.

5) In this step, we identify and name all of the objects
and entities together with their particular features
and attributes that are relevant to defining the above
world states and situations.

6) The last step is to use the context of the particular
task activities to establish the distances and,
therefore, the resolutions at which the above objects
and entities must be measured and recognized by
the sensory processing component. This step
establishes a set of requirements and/or
specifications for the sensor system at the level of
each separate subtask activity.

We will now cover these six steps in detail using the on-
road driving example.

Step 1 – Task Decomposition Design

The first step is to gather as much task related knowledge as
possible with the goal of defining a set of commands that
incorporate all of the activities at all levels of detail. For on-
road driving this knowledge source would include driving
manuals, state and federal driving codes, manuals on traffic
control devices and detailed scenario narratives by SMEs of
large numbers of different driving experiences.

 Scenarios and examples are gone over in an attempt to
come up with the names of commands that describe the

activities at finer and finer resolutions of detail. Figure 3
provides an example. The high level goal of “Goto
destination” (such as “go to post office”) is broken down into
a set of simpler commands – “GoOnRoad-name”, “TurnLeft
Onto-name” (MapQuest-like commands). At the next level
down, these commands are broken down to simpler
commands such as “Drive On Two Lane Road”, “Pass
Vehicle In Front” and these are then decomposed to yet
simpler commands such as “FollowLane”,
ChangeToLeftLane”,etc

Four very important things are being done with the
knowledge in this step.

1) The first is the discovery and naming of simpler
component subtasks that go into making up the
more complex tasks.

2) The second is that for each of these component
subtasks, we are defining a subtask command.

3) The third is the understanding of the coordination of
subtask activities that the task involves. This is
identified by the analysis of scenarios of
remembered specific examples.

4) The fourth is the careful grouping of these
commands by layer and decomposition to ensure
that the example on-road driving tasks can be
completely described, from the start to finish of a
scenario, by the proper sequencing of these
commands at the appropriate levels.

This first step of the methodology sets the number of layers
of agent control modules that will be required (step 2) to
execute the task decomposition.

Figure 3. Task decomposition decision tree for on-road driving
example. Shows the simpler commands that are used at each lower
layer to represent the finer and finer resolutions of detail activities.

GotoDestination...

GoOn…Rd TurnRightOnto...RdTurnLeftOnto...Rd

FollowLane

DoTrajSeg

DriveOnTwoLaneRd PassVehInFront NegotiateLaneConstriction

ChangeToRightLaneChangeToLeftLane

GoOn…Rd GoOn…Rd

FollowLane FollowLane

DoTrajSegDoTrajSegDoTrajSeg

Turn AccelerateForward SlowDown

Step 2 – Agent Control Module Organization
Once a set of commands is defined, we need an organization
to execute them. This step is identical to laying out an
organizational structure of people in a business or the
military. You know what you want to do at various levels of
detail – now you need an organization of intelligent agents to
do it. This structure is built from the bottom up. The above
detailed task decomposition will tell us how many layers of
agents to have in our organization but not how many agents
at a level or how they are grouped and coordinated. This step
starts at the bottom with an agent control module controlling
each actuator in the system and then uses the knowledge of
the task activities to understand which subordinate agents are
grouped under which supervisor to best coordinate the task
commands from step 1.

Figure 4 illustrates how a grouping of agent control
modules is assembled to accomplish the commands defined
in step 1. In this example, the lowest level servo control
modules are represented by icons of the actuators being
controlled. The steering servo control module is represented

Figure 4. The hierarchical organization of agent control modules

that are to execute the task command decomposition.

by a steering wheel icon, the brake servo by a brake pedal
icon, etc. For this simple example, only four actuator control
module icons are shown. The brake, throttle, and
transmission servo agent control modules are grouped under
a single supervisor agent control module, which we will call
the Speed Control Agent. This supervisor agent control
module will receive commands such as “AccelerateForward”
(a more general form would be “Accelerate(magnitude,
direction)) and have to coordinate its output commands to the
brake, the throttle, and the transmission to accomplish them.
By a similar analysis, the Steering Servo Agent is placed
under a supervisor agent we call the Steering Control Agent
Module. The Vehicle Trajectory Control Agent coordinates
steering commands to the Steering Control Agent with the
speed commands sent to the Speed Control Agent described
above. The command decomposition of the commands at
levels above the Vehicle Trajectory Control Agent are shown
being executed by a single agent at each layer since there are
no more subordinate agent control modules to be coordinated
in this simple example. In a more realistic implementation,
there would be additional agent control modules for ignition
and engine starting, lights, turn signals, windshield
wiper/washer, pan/tilt turrets that carry the sensor sets etc.
This would be the step at which the organizational structure
would be defined and laid out to properly coordinate these
modules’ activities in accordance with the task
decomposition descriptions from step 1.

Step 3 – State-Table Definitions
At this stage of the knowledge definition process we know
the vocabulary and syntax of commands. We also know
what set of subcommands each command decomposes into,
and where in the agent control hierarchy these
decompositions take place. Step 3 is to establish the rules
that govern each command’s decomposition into its
appropriate sequence of simpler output commands. These
rules are discovered by first listing the approximate sequence
set of output commands that correspond to a particular input
command to an agent

Figure 5 illustrates this step with a state-table of the “Pass
Veh(icle) In Front” command at the Driving Behaviors
Agent Control Module. This pass command is decomposed
into five simpler output commands – “Follow Lane”,
“Change to Left Lane”, “Follow Lane”, “Change to Right
Lane”, and “Follow Lane” which are at the appropriate level
of resolution for this layer in the agent hierarchy. These
output commands can be read in sequence down the right
hand column of the state table. The knowledge that is being
added by this step 3 is to identify and name the situations
(the left hand column of the state-table) that will transition
the activity to each of these output commands. These named
situations are the branching conditions that complete the task
decision tree representation.

GotoDestination...

GoOn…Rd

PassVehInFront

FollowLane

DoTrajSeg

Vehicle
Trajectory

Destination
Manager

Driving
Behaviors

Route Segment
Manager

Elemental
Maneuvers

Turn

Steering
Control

AccelerateForward

Speed
Control

P
N
D
2
1

Each of these newly named transition situations with their
corresponding output command actions represent a single
production rule that is represented as a single line in the
state-table. The sequence that these lines (rules) are executed
is ordered by the addition of a state variable (S1, S2, etc). In
the example in figure 5, the first rule shown in the state-table
says that if this is a “New Plan” (input condition), then the
output action side of the rule (the right hand side of the state-
table) sets the state to “S1” and outputs the command to
“Follow Lane”. As a result of executing this rule, this
module is now in state “S1” and can only execute rules that
include the state value of “S1” in their input condition. The
only rules that will be searched by this module are those in
the state-table that clusters the rules relating to this particular
input command (“PassVehInFront”). In this state table, there
is only one line (rule) that contains the state value “S1” as
one of its input conditions. Thus, only that line can match
and it will not match until the situation
“ConditionsGoodToPass” is also true. When this situation
occurs, this line will match (this rule will fire) and the
module will go to state “S2” and output the command to
“ChangeToLeftLane”. This output command is sent to the
subordinate agent control module (Elemental Maneuvers
Control Module) where it becomes that module’s input
command invoking a corresponding state-table to be
evaluated as described here.

Figure 5. State-table for the Pass Vehicle In Front command.

Each line is a rule relevant to this task. The left column contains the
state values used for ordering the execution and the situations that
specify the branching conditions of the task decision tree. The right
column contains the output commands.

Thus, the large set of rules governing the task decision tree

execution is clustered both by the layer of resolution in the
hierarchy and by the task context of the particular command

at each layer so that only a very small number of rules have
to be searched at any given time. The execution order of
these selected rules is controlled by the addition of state
values. It is important to note that the knowledge discovery,
representation and organization have been completely driven
by looking at the problem from the detailed task
decomposition point of view.

We will now make an important summary about the
structuring of the knowledge base in these first three steps.
These three steps were concerned with task knowledge
expressed as the finer and finer branching of the decision
process whereby the output action is sequenced in order to
accomplish the assigned task. This third step identifies
arbitrarily named situations we create to encompass
everything that the task depends upon at this point and at this
level of resolution in its execution. In this example, it was
named “ConditionsGoodToPass”.

These first three steps provide a complete listing of the
task decomposition rules (i.e. these rules that determine when
the system has to do something different in order maintain
progress towards the goal.) These rules have been grouped
into layers of resolution, and within each layer, clustered into
tables of rules relevant to a single input command. Within
each table they are ordered in their execution sequence by
additional state values.

We can think of these first three steps as identifying the
procedural knowledge involved in the task decomposition
process, i.e. defining all of the task branching conditions and
resultant corrective output actions. The next three steps are
to identify all of the knowledge that is used to evaluate
whether or not the branching conditions are true.

Step 4 – Situation Dependencies on World

States
The world knowledge we want to identify and represent are
those precursor world states that determine the task
branching situation in the input side of the state-tables. This
is best illustrated with an example. Figure 6 shows the
“PassVehInFront” state-table. As discussed above, the
output command to “Change To Left Lane” is issued when
the “ConditionsGoodToPass” situation occurs. We ask of
our expert knowledge sources “what do we have to know
about the state of the world at this time to say that the
conditions are good to pass”. Again, we use detailed
scenarios and our knowledge sources to drill down to the
parameters that go into this situation assessment. We find
that there is a surprisingly large set of things we want to
know. We list these items as they come up in scenarios and
from manuals – “there cannot be an on-coming car within the
passing distance”, “there must be a broken yellow lane
marker on our side of center in the lane”, “there cannot be a
railroad crossing within the passing distance”, “our own

 S1 ConditionsGoodToPass

PassVehInFront

 S2 ChangeToLeftLane

S2 InPassingLane S3 FollowLane

S4 ReturnedToLane S0 FollowLane
 Done

NewPlan S1 FollowLane

 S3 ClearOfPassedVehicle S4 ChangeToRightLane

ConditionsGoodToPass

Input State/Situation Output Action

Figure 6. The identification of all of the precursor world states used to evaluate whether the situation “ConditionsGoodToPass” is true or not.

vehicle is not being passed”, etc. We will call these items
world states since they seem to describe certain attributes
about the world that are relevant to our present task.

Once we have listed the world states relevant to the
situation of “ConditionsGoodToPass”, we go over the list
and see if groupings can be made. In this case, we group
some world states into a category we call “LegalToPass”,
and others into additional categories we call
“EnvironmentSafeToPass”, “SituationInFrontOkToPass”,
“SituationInBackOkToPass”, “OncomingTrafficOKToPass”,
etc. These groupings are aggregate world states leading to
the situation “ConditionsGoodToPass”. For this situation to
be true, all of the aggregate world states have to be true. For
each of the aggregate world states to be true, all of their
component world states have to be true.

The purpose of this step is to provide a listing of all of the
parameters (in terms of named world states) that affect
whether the task branching condition situation is true or not.
We have not identified the sensitivity of the final situation to
these precursor values or what functions are used to weight
and evaluate the individual or combined truth of these
precursor values. The identification of these world states is
independent of whatever technique is used to implement the

control system. Different implementation paradigms will
affect the sensitivity, weighting, costing, and other evaluation
functions. For example, attributes like the level of driver
aggressivity may affect the calculation of the length of the
required passing zone that is a precursor to a number of
individual world state calculations related to the
“ConditionsGoodToPass”.

How to best represent these functions and the variables
they affect is still an area of research.

Step 5 – World State Dependencies on Objects
This step identifies all of the objects, their features and
attributes that need to be measured by the sensing system to
create the world model states described above. Figure 7
continues with the passing example. As described above,
one of the aggregate world model states was “LegalToPass”
which was a grouping of a number of related world states
which all deal with various legal restrictions on the passing
operation. One of these component world states that identify
a legal restriction is “NoRailroadCrossingInPassZone”. In
this step, for each of the identified world states we wish to
identify all of the objects, their features, and attributes

LegalToPass

EnvironmentSafeToPass

SituationInFrontOKtoPass

SituationInBackOKtoPass

OnComingTrafficOKtoPass

NoTransitOrSchoolBusStopping

NoBridgeInPassZone

NoRailroadXInPassZone

NoIntersectionsInPassZone

LaneMarkingsAllowPass

“NoPassZone” -

NoTollBothInPassZone

NoTunnelInPassZone

NoConstructionInPassZone

NoTransitOrSchoolBusStopping

NoBridgeInPassZone

NoIntersectionsInPassZone

LaneMarkingsAllowPass

NotInEffect

NoTollBothInPassZone

NoTunnelInPassZone

NoConstructionInPassZone

WeatherNotObscuring

WindsNotSignificant

OwnVehicleCapable
RoadSurfaceSuitable
RoadNotTooSlippery

RoadSplashNotSignifcant

 S1 ConditionsGoodToPass

PLAN STATE TABLE

PassVehInFront

 S2 ChangeToLeftLane

S2 InPassingLane S3 FollowLane

S4 ReturnedToLane S0 FollowLane
 Done

NewPlan S1 FollowLane

 S3 ClearOfPassedVehicle S4 ChangeToRightLane

ConditionsGoodToPass

NoVehicleEnteringRoad
VehInFrontNotBlockingSight

NoCurveBockingSight
NoHillBlockingSight

NoVehicleTurningLeft

NoPedestrianOnRoadSide

NoBicyclist

VehiclesDrivingNormally

NoVehiclePassing

SufficientReturnSpace

NoVehicleEnteringLane

NoPostalVehicleStopping

NoActiveEmergencyVehicles

NoDeliveryVehicleStopping

VehicleNotAttemptingToPass
VehicleNotTailgating

VehicleNotClosingRapidly
NoActiveEmergencyVehicles

DistToOnComingVehicleOK
OncomingVehiclesNormal BEHAVIOR

GENERATION
World States

Input State/Situation Output Action

relevant to creating each named world state value. For the
world state named “NoRailroadCrossingInPassZone”, these
objects would include the railroad crossbuck emblem,
crossing lights, crossing gate, crossing signs either alongside
the road or painted on the road surface, the railroad tracks,
and the train itself. For each of these objects, we identify
characteristic features or attributes that will be used for
recognition of the object (e.g. the width and length of the
crossbuck planks) and/or its state (e.g. flashing lights or a
lowered gate as indicator of active warning state).

Figure 7. Example of the objects that are used to establish the

“NoRailroadXinPassZone” world state.

Step 4 has defined a surprising large set of named world

states that are relevant to decisions that have to be made at
each decision point in the task. Now, in step 5 we find that
each of these world states might result from a number of
objects and each of these has multiple features and attributes
required for their recognition. We are starting to get an idea
of the size of the knowledge base, and it is extremely large.
The good news is that the RCS methodology’s approach to
the grouping and representation of this knowledge base has
created a manageable structuring. We have a place to put
each piece of knowledge and we use the task context to
encode much of the relationship of the knowledge elements
to each other.

Step 6 – Measurement Resolutions

In this last step, we want to define the resolution
requirements for the measurement of objects for specific task
decisions. We do this by determining the expected distances
to these objects during particular task activities. In the case
of the task activity of passing a vehicle in front, we have to
be able to see objects such as the railroad crossbuck at the far
limit of the expected passing zone. For a vehicle passing on
a 75kph road, the passing zone could easily be 200 m or
more. This means that the crossbuck, which is found at the
railroad crossing itself, (whereas warning signs might be 300
to a 300 m before the crossing) would have to be sensed and
recognized by the sensory processing system at this distance.

Since we know the size of the crossbuck plank elements, we
can make an estimate of the absolute minimum sensory
processing capability required to recognize it at this distance.
This works out to sensors having a minimum resolution
capability of .07 degrees.

These specifications of the objects, attributes, features, and
measurement resolutions have been derived from a detailed
analysis of the world states required to evaluate a particular
task branching condition situation. This allows us to provide
a very detailed specification as to what sensory processing is
required in order to do specific tasks and subtasks. This is
important because one of the single biggest impediments to
the implementation of autonomous driving control systems is
the lack of capability of the sensory processing systems. The
identification of the objects of interest for particular task
activities focuses the attention of the sensory processing on
these objects that should be measured at the present state of
the task, leading to very efficient and effective use of this
very compute intensive resource. It additionally helps to
identify early on, during system design, which tasks are even
feasible given the present state-of-the-art in sensory
processing and points the direction to research areas to be
developed for other capabilities to be realized.

This also allows for the development of performance
specifications in order to qualify systems for different driving
capabilities (Barbera et al. 2003).

Summary and Conclusions

This paper has presented a description of the use of the task-
decomposition-oriented RCS methodology as an approach to
acquiring and structuring the knowledge required for the
implementation of real-time complex control tasks. Some
form of structuring is essential to this process because
complex control tasks such as on-road autonomous driving
are characterized by extremely large knowledge sets that
would be impossible to deal with if not for some way to
organize them. The task decomposition approach to this
structuring has given us a single consistent search process of
well-defined sequential steps to both discover the relevant
knowledge and to organize it. The knowledge has been
partitioned into two large elements:

1) task knowledge (i.e. how to do things) concerned
with the description and representation of the task
decomposition through layers of agent control
modules performing control decision branching
decisions, encoded as rules in state-tables;

2) world knowledge (i.e. what is the situation)
concerned with the description and representation of
all of the states of the world that are used to
generate each of these condition branching
situations in each state-table at each layer of the
agent control hierarchy.

NoBridgeInPassZone

NoIntersectionsInPassZone
LaneMarkingsAllowPass
“NoPassZone”-

NoTollBothInPassZone
NoTunnelInPassZone

NotInEffectLights (pos, size, state)
Crossing Gate (pos,

Signs (pos, facing-dir, loc,
text and graphics)

Tracks (pos, size, dir)

Train (pos, dir, state)

CrossBuck(length,

NoRailroadXInPassZone

NoTransitOrSchoolBusStopping
NoConstructionInPassZone

World StatesObjects, Features

width, orient, pos)

length, height, state)

The representational format for all of the knowledge has
been driven by a requirement to identify everything
according to its relevance to task activities. This has a very
important impact on the implementation. This organization
of the task knowledge is in a form that can be directly
implemented. It has partitioned the knowledge by layers of
resolution or abstraction so high level commands are
clustered higher in the hierarchy and low level, equipment
control knowledge is clustered at lower levels in the
hierarchy. It has threaded access to all of the knowledge
from the task through world model states to objects and their
attributes to be measured. This is exactly the form the
control system needs so it can access all of the information
relevant to the present task activity as rapidly as possible.

This representational format leaves the knowledge in a
form that continues to be easily accessible by non-
programmer SMEs because all of the knowledge is indexed
through the task behavior which is in exactly the same format
that the SMEs remembered it for example scenario
discussions. This means that continual evolution and
updating of the knowledge structure is possible by both the
SMEs and the system designers, together or separately. New
task commands, new branching condition situations and
output commands, new world states, additional objects,
features and attributes are all easily added and the
appropriate place to add them is indexed by the task
decomposition itself.

The research challenge is to develop a computer-based
knowledge storage mechanism to capture the results of this
process which up to now has been put into computers as a
combination of drawings, word documents, spread sheets,
and data bases. The hope is that ontology tools and
techniques will provide a more consistent single
representational solution to capturing this knowledge and all
of the implied relationships, especially to the task, in a more
computer readable and processible form.

Acknowledgements

This work was supported in part by the Army Research Lab’s
program in unmanned vehicles (PM. C Shoemaker) and
DARPA’s Mobile Autonomous Robotics program (PM. D.
Gage).

Product/Company Disclaimer

The identification of certain commercial products or
companies does not imply recommendations or
endorsements by NIST.

References

Albus, J. and Meystel, A. 2001. Engineering of Mind. New
York,NY: John Wiley & Sons, Inc.

Albus, J. and et.al. 2002 "4D/RCS Version 2.0: A Reference
Model Architecture for Unmanned Vehicle Systems,"
NISTIR 6910, National Institute of Standards and
Technology, Gaithersburg, MD.

Barbera, A.; Horst, J.; Schlenoff, C.; Wallace, E.; Aha, D.
2003. Developing World Model Data Specifications as
Metrics for Sensory Processing for On-Road Driving Tasks.
In Proceedings of the 2003 PerMIS Workshop. Gaithersburg,
MD.: NIST Special Publication 990.

